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Abstract
Two types of time-dependent 1D oscillators are considered: parametrically
excited, described by the Mathieu equation, and parametrically pumped with a
periodic driving force. The adopted field method approach is applied and the
complete sets of their linear invariants as well as the corresponding quadratic
invariants are derived.

PACS numbers: 45.10.−b, 45.30.+s, 45.50.−j

1. Introduction

The systems whose behaviour is modelled by

ẍ + ω2(t)x = 0 (1)

play a very important role in various branches of physics (classical and quantum mechanics,
for example) as well as in engineering. In classical mechanics, equation (1) models the motion
of a slowly lengthening pendulum or an oscillator whose position is defined by the generalized
coordinate x, while its frequency ω varies in time. In quantum mechanics, equation (1) matches
a one-dimensional stationary Schrödinger equation in which the probability amplitude ψ is
replaced by the coordinate x, while the coordinate appearing therein is replaced by time t
and ω2 is equivalent to the subtraction of the energy and the potential [1]. In engineering,
particularly in mechanical and electrical engineering, it describes a variety of systems whose
parameters change slowly with respect to time.

A large number of varied approaches to obtaining adiabatic invariants of time-dependent
oscillators, the review of which is given in [2], point out the theoretical and practical
significance of the knowledge of these quantities which remain approximately conserved
when the system parameters are slowly varying or, more precisely, whose time derivative
contains only terms higher than some particular order.

The present study is aimed at obtaining adiabatic invariants of some time-dependent 1D
oscillators: parametrically excited, described by the Mathieu equation, and parametrically
pumped with a periodic driving force. This study is a natural continuation of recent research
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on the possibility of finding these quantities [3] by applying the field method, the basics of
which will be given in the next section.

2. On the field method

A starting point of the field method algorithm [4–8] for studying motion of any mechanical
system, say the time-dependent oscillator (1), is representing its mathematical model in the
form of the first-order differential equations:

ẋ = p ṗ = −ω2(t)x. (2)

Then, the field is chosen from the set of the state variables, i.e. it can be a generalized
coordinate x or momentum p. In such a way both state variables are treated equivalently
and two approaches can be taken. Namely, it can be assumed that the momentum can be
expressed in terms of time and the generalized coordinate p = �(t, x), which represents
the so-called field-momentum approach. On the other hand, following the field-coordinate
approach, the generalized coordinate x can be nominated to form a field depending on time
and the momentum x = U(t, p). The first approach seems to be more reasonable and
comparable to that used, for example, in the Hamilton–Jacobi theory. The second one is
motivated by the fact that in analytical mechanics both coordinates and momentums play an
equal role in describing the motion [4]. Since the field-momentum approach has been more
frequently applied to many different and disparate problems of mechanics, in this study the
field-coordinate approach will be used in order to show that it can also be beneficial.

Partial differentiation of the expression x = U(t, p) in combination with (2) yields the
so-called basic field equation:

∂U

∂t
− ∂U

∂p
ω2(t)U − p = 0. (3)

For the case when ω2 = const, the corresponding basic field equation is a quasi-linear partial
differential equation, which, according to invariant embedding theory [9], may be integrated
by assuming a general solution as an affine transformation:

U = f1(t)p + f2(t). (4)

Besides, it has been shown [5, 7] that if one assumes an incomplete solution of such an
equation in the form in which one arbitrary constant A appears,

U = Ap + f (t), (5)

an invariant (conservation law) of the system can be obtained.
We will demonstrate that an approximate incomplete solution of the basic field equation (3)

leads to a complete set of adiabatic invariants of the system (1). In this way, complete
integrability is established and an approximate solution for motion is specified. In order to
accomplish the approximate incomplete solution, the multiple variable expansion procedure
will be combined with the field-coordinate approach.

3. Parametrically excited system

Consider an oscillator whose frequency changes according to

ω2(t) = δ + 2ε cos 2t, (6)

where δ is the frequency parameter and ε is a small constant parameter (ε � 1). The
corresponding differential equation of motion (the Mathieu equation) is the archetype for a
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linear system with an internal periodic excitation. The boundness (stability) of its solutions
has been studied extensively, including obtaining the so-called transitional curves in the
δε-plane [10, 11]. These curves separate the regions in which motion is unbounded (unstable)
from the region in which all solutions are bounded (stable). Besides, the asymptotic periodic
solutions along transitional curves have been of much of interest. Among many procedures
for deriving them, the most frequently used are the perturbational methods: the method of
strained parameters and the method of multiple scales [10]. In the following study, the adiabatic
invariants which hold right on the transitional curves will be determined by combining the
field method technique with the perturbational procedure.

The equivalent to the Mathieu equation in the field method approach is the basic field
equation:

∂U

∂t
− ∂U

∂p
(δ + 2ε cos 2t)U − p = 0. (7)

In order to find an approximate solution of this partial differential equation, the following
power expansions in ε are used for time, the field, the other state variable as well as for the
transitional curves:

T = t, τ = εt, τ̃ = ε2t, (8)

U(t, p, ε) = U0(T , τ, p0) + εU1(T , τ, p1) + ε2U2(T , τ, p2), (9)

p(t, ε) = p0(T , τ ) + εp1(T , τ ) + ε2p2(T , τ ), (10)

δ = δ0 + εδ1 + ε2δ2. (11)

Besides, it assumes that the dependence of the field on the corresponding variable is not
affected by the step of approximation [6], i.e.,

∂U

∂p
= ∂U0

∂p0
= ∂U1

∂p1
= ∂U2

∂p2
. (12)

Substituting (8)–(12) into (7) and equating coefficient of like powers of ε, one obtains

∂U0

∂T
− ∂U0

∂p0
δ0U0 − p0 = 0, (13)

∂U1

∂T
− ∂U1

∂p1
δ0U1 − p1 = −∂U0

∂τ
+

∂U0

∂p0
δ1U

∗
0 +

∂U0

∂p0
U ∗

0 (e2iT + e−2iT ), (14)

∂U2

∂T
− ∂U2

∂p2
δ0U2 − p2 = −∂U1

∂τ
+

∂U1

∂p1
δ1U

∗
1 +

∂U0

∂p0
δ2U

∗
0 +

∂U1

∂p1
U ∗

1 (e2iT + e−2iT ), (15)

where i is an imaginary unit. In this coupled system of partial differential equations, U0–
U2 represent the incomplete solutions, while U ∗

0 and U ∗
1 are the so-called solutions along

trajectories. Unlike the incomplete solutions, which depend on time and the other state
variable (9), the solutions along trajectories should be expressed as functions of time only.

It is noticeable that the form of (13) as well as the left-hand sides of (14) and (15)
corresponds to (3) with ω2 = const, whose incomplete solution can be assumed as (5).
Following this analogy, but keeping in mind the existence of time scale (8), the trial incomplete
solutions for the field components are assumed as [3]

U0 = Ap0 + C0(τ ) eAδ0T , (16)

Uj = Apj + Cj(T , τ ) eAδ0T , j = 1, 2, (17)
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where the constant A has two values:

A′ = i√
δ0

, A′′ = − i√
δ0

. (18)

Note that the technique used in this procedure regarding supposing solutions in the forms (8)–
(11) and (16), (17) is based on the fundamental assumption generally accepted in all asymptotic
methods that the successive approximations are developed by a recursive procedure for a fixed
number of terms and for ε → 0, so that these expansions represent reliable solutions on some
finite interval of time and reasonably correct solutions for the long interval of time.

Two values of the constant A (18) imply that all unknown functions Cα (α = 0, 1, 2) in
(16), (17) can have two forms:

C ′
α = Cα(A′), C ′′

α = Cα(A′′). (19)

If the initial conditions are prescribed as x(t = 0) = a and p(t = 0) = b, expressions (16), (17)
imply

C ′
0(0) = a − ib√

δ0
, C ′′

0 (0) = a +
ib√
δ0

, (20)

C ′
j (0, 0) = C ′′

j (0, 0) = 0. (21)

Then, the incomplete solutions will be transformed into the solutions along trajectories U ∗
0

and U ∗
1 . Namely, taking into account (18) and (19), equations (16) and (17) give

U ∗
0 = C ′

0(τ ) ei
√

δ0T + C ′′
0 (τ ) e−i

√
δ0T

2
, (22)

U ∗
j = C ′

j (T , τ ) ei
√

δ0T + C ′′
j (T , τ ) e−i

√
δ0T

2
. (23)

Using the incomplete solutions (16), (17) and the solutions along trajectories (22), (23),
equations (14), (15) transform into

dC1

dT
= −dC0

dτ
+ Aδ1 e−Aδ0T

C ′
0 ei

√
δ0T + C ′′

0 e−i
√

δ0T

2

+ A e−Aδ0T

(
C ′

0 ei
√

δ0T + C ′′
0 e−i

√
δ0T

)
(e2iT + e−2iT )

2
, (24)

dC2

dT
= −dC1

dτ
+ Aδ1 e−Aδ0T

C ′
1 ei

√
δ0T + C ′′

1 e−i
√

δ0T

2
+ Aδ2 e−Aδ0T

C ′
0 ei

√
δ0T + C ′′

1 e−i
√

δ0T

2

+ A e−Aδ0T

(
C ′

1 ei
√

δ0T + C ′′
1 e−i

√
δ0T

)
(e2iT + e−2iT )

2
. (25)

Next, the requirement of no appearance of the secular terms will be used to find C ′
0, C ′′

0 from
(24) and C ′

1, C ′′
1 from (25). On analysis of these two equations, it is clear that the secular terms

depend primarily on the value of δ0. The obvious critical value is δ0 = 1, which corresponds
to the periodic solutions of period 2π (22), (23). The case δ0 = 4 corresponds to the periodic
solutions with period π . This implies that the further analysis should be carried out separately
starting from these particular values of δ0. But before that, let derive the general forms of the
adiabatic invariants as the functions of C ′

0, C ′′
0 , C ′

1 and C ′′
1 .
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3.1. On the forms of the adiabatic invariants

The field (9) limited to the second component (17) is

x ≡ U = Ap0 + C0(τ ) eAδ0T + ε[Ap1 + C1(T , τ ) eAδ0T ]. (26)

Including two possible values of A, C0 and C1, as well as recognizing the expansion (10) for
p, two independent complex adiabatic invariants can be obtained:

[
x − ip√

δ0

]
e−i

√
δ0T − C ′

0(τ ) − εC ′
1(T , τ ) = 0, (27)

[
x +

ip√
δ0

]
ei

√
δ0T − C ′′

0 (τ ) − εC ′′
1 (T , τ ) = 0. (28)

Combining the invariants (27) and (28), the solution for motion can be found. Besides, their
product can yield the following quadratic energy-like adiabatic invariant:

I ≡ x2 +
p2

δ0
− ε[C ′

0(τ )C ′′
1 (T , τ ) + C ′′

0 (τ )C ′
1(T , τ )]

+ ε2C ′
1(T , τ )C ′′

1 (T , τ ) − C ′
0(τ )C ′′

0 (τ ) = 0, (29)

or

Ĩ ≡ x2 +
p2

δ0
− εx

[
C ′

1 ei
√

δ0T + C ′′
1 e−i

√
δ0T

]

− ε
ip√
δ0

[
C ′

1 ei
√

δ0T − C ′′
1 e−i

√
δ0T

]
+ ε2C ′

1C
′′
1 − C ′

0C
′′
0 = 0. (30)

In the form (29), the coefficients next to the small parameter are expressed in terms of time,
while in the second form (30) these coefficients contain time and the state variables x and p.

Now, the expressions for the linear invariants and the quadratic one will be specified for
some values of the parameter δ0.

3.1.1. Case 1: δ0 = 1. In order to prevent the appearance of the secular terms in (24) when
δ0 = 1, the following condition must be satisfied:

dC ′
0

dτ
− iδ1

C ′
0

2
− i

C ′′
0

2
= 0,

dC ′′
0

dτ
+ iδ1

C ′′
0

2
+ i

C ′
0

2
= 0. (31)

Using C ′
0 = c′ erτ , C ′′

0 = c′′ erτ , the system (31) gives r2 = 1−δ2
1

4 . For the case when |δ1| < 1,
two real roots exist and motion is unbounded. If |δ1| > 1, motion is bounded, having the
form of modulated oscillations. For the case |δ1| = 1, periodic solutions appear along the
transitional curves. Then, the functions C ′

0 and C ′′
0 are pure constants, equal to their initial

values (20). When δ1 = 1, it must be a = 0, while for δ1 = −1 the condition b = 0 holds.
Solving (24) for the former condition, one has

C ′
1 = C ′

0

4
e2iT − C ′′

0

8
e−4iT + R′(τ ), C ′′

1 = −C ′
0

8
e4iT +

C ′′
0

4
e−2iT + R′′(τ ), (32)

where R′ and R′′ are unknown functions. Substituting (32) into (25) and equating secular
terms with zero, one gets

dR′

dτ
− i

R′

2
− i

R′′

2
− i

C ′
0

2

(
δ2 +

1

8

)
= 0,

dR′′

dτ
+ i

R′

2
+ i

R′′

2
+ i

C ′′
0

2

(
δ2 +

1

8

)
= 0.

(33)
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This system, together with (21), gives δ2 = − 1
8 , R′ = R′(0) = 3ib

8 , R′′ = R′′(0) = − 3ib
8 .

So, along the transition curve

δ = 1 + ε − 1

8
ε2, (34)

the following linear adiabatic invariants exist:

[x − ip] e−iT + ε

[
ib

4
e2iT +

ib

8
e−4iT

]
= −ib + ε

3ib

8
, (35)

[x + ip] eiT − ε

[
ib

4
e−2iT +

ib

8
e4iT

]
= ib − ε

3ib

8
. (36)

Separating the real and imaginary parts, they can be expressed as

J11 ≡ x cos T − p sin T − ε

[
b

4
sin 2T − b

8
sin 4T

]
= 0, (37)

J12 ≡ x sin T + p cos T − ε

[
b

4
cos 2T +

b

8
cos 4T

]
= b − ε

3b

8
. (38)

The corresponding quadratic invariant is

J13 ≡ x2 + p2 − ε

[
b2

2
cos 2T +

b2

4
cos 4T

]
− ε2

[
−3b2

16
cos 2T − 3b2

32
cos 4T +

b2

16
cos 6T

]

= b2 − ε
3b2

4
+ ε2 7b2

32
. (39)

Having found a complete set of adiabatic invariants (35), (36) or (37), (38), the approximate
solution can also be derived.

If δ1 = −1 and b = 0, we have C ′
0 = C ′

0(0) = a, R′ = R′′ = − a
8 . Thus, the transition

curve is given by

δ = 1 − ε − 1
8ε2, (40)

and the adiabatic invariants which hold along this curve are

[x − ip] e−iT + ε
[a

4
e2iT − a

8
e−4iT

]
= a − ε

a

8
, (41)

[x + ip] eiT − ε
[a

4
e−2iT − a

8
e4iT

]
= a − ε

a

8
, (42)

or

I11 ≡ x cos T − p sin T − ε
[a

4
cos 2T − a

8
cos 4T

]
= a − ε

a

8
, (43)

I12 ≡ x sin T + p cos T + ε
[a

4
sin 2T +

a

8
sin 4T

]
= 0, (44)

I13 ≡ x2 + p2 − ε

[
a2

2
cos 2T − a2

4
cos 4T

]
− ε2

[
−a2

16
cos 2T +

a2

32
cos 4T − a2

16
cos 6T

]

= a2 − ε
a2

4
+ ε2 3a2

32
. (45)
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3.1.2. Case 2: δ0 = 4. After substituting the value δ0 = 4 into (24) and using (18), one
concludes that the following secular terms must vanish:

dC ′
0

dτ
− iδ1

C ′
0

4
= 0,

dC ′′
0

dτ
+ iδ1

C ′′
0

4
= 0. (46)

It follows that δ1 = 0 and C ′
0 = C ′

0(0), C ′′
0 = C ′′

0 (0). Integrating what remains in (24) leads to

C ′
1 = C ′

0

8
e2iT − C ′

0

8
e−2iT − C ′′

0

8
e−2iT − C ′′

0

24
e−6iT + R′(τ ),

C ′′
1 = −C ′

0

8
e2iT − C ′′

0

8
e2iT +

C ′′
0

8
e−2iT − C ′

0

24
e6iT + R′′(τ ).

(47)

Putting these expressions into (25) and eliminating the secular terms, we obtain

dR′

dτ
− iδ2

C ′
0

4
+

i

4

(
C ′

0

6
+

C ′′
0

4

)
= 0,

dR′′

dτ
+ iδ2

C ′′
0

4
− i

4

(
C ′

0

4
+

C ′′
0

6

)
= 0. (48)

For a = 0, we have C ′
0 = −C ′′

0 = − ib
2 and δ2 = − 1

12 , R′ = −R′′ = ib
12 . However, when b =

0, the solutions are C ′
0 = C ′′

0 = a, δ2 = 5
12 , R′ = R′′ = a

6 .
With the above given quantities, the transition curve is

δ = 4 − 1
12ε2, (49)

while its corresponding adiabatic invariants are[
x − ip

2

]
e−2iT + ε

[
ib

16
e2iT +

ib

48
e−6iT

]
= − ib

2
+ ε

ib

12
, (50)

[
x +

ip

2

]
e2iT − ε

[
ib

16
e−2iT +

ib

48
e6iT

]
= ib

2
− ε

ib

12
. (51)

These complex invariants yield the real ones:

I41 ≡ x cos 2T − p

2
sin 2T + ε

[
− b

16
sin 2T +

b

48
sin 6T

]
= 0, (52)

I42 ≡ x sin 2T +
p

2
cos 2T − ε

[
b

16
cos 2T +

b

48
cos 4T

]
= b

2
− ε

b

12
, (53)

while the quadratic one is

I43 ≡ x2 +
p2

4
− ε

[
b2

16
cos 2T +

b2

48
cos 6T

]
− ε2

[
− b2

96
cos 2T − b2

288
cos 6T

+
b2

384
cos 8T

]
= b2

4
− ε

b2

12
+ ε2 13b2

1152
. (54)

Another transition curve emanating form the same origin is given by

δ = 4 +
5

12
ε2, (55)

and the adiabatic invariants along this curve are[
x − ip

2

]
e−2iT − ε

[a

8
e2iT − a

4
e−2iT − a

24
e−6iT

]
= a + ε

a

6
, (56)

[
x +

ip

2

]
e2iT − ε

[a

8
e−2iT − a

4
e2iT − a

24
e6iT

]
= a + ε

a

6
, (57)

i.e.,

J41 ≡ x cos 2T − p

2
sin 2T + ε

[a

8
cos 2T +

a

24
cos 6T

]
= a + ε

a

6
, (58)
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J42 ≡ x sin 2T +
p

2
cos 2T + ε

[
3a

8
sin 2T +

a

24
sin 6T

]
= 0. (59)

The quadratic invariant is

J43 ≡ x2 +
p2

4
+ ε

[
a2

4
cos 2T +

a2

12
cos 6T

]
− ε2

[
−a2

24
cos 2T − a2

24
cos 4T

− a2

72
cos 6T − a2

96
cos 8T

]
= a2 + ε

a2

3
+ ε2 31a2

288
. (60)

3.1.3. Case 3: δ0 = k2, k � 3. When the parameter k has odd values the periodic solutions
of period 2π exist, while the even values of k result in the periodic solutions with period
π . Following the algorithm proposed above, the expression for the transition curves can be
obtained:

δ = k2 +
1

2(k2 − 1)
ε2, (61)

as well as the linear adiabatic invariants:

[
x − ip

k

]
e−ikT = C ′

0 +
ε

k

[
C ′

0

4
e2iT − C ′

0

4
e−2iT − C ′′

0

4(k − 1)
e−2i(k−1)T

− C ′′
0

4(k + 1)
e−2i(k+1)T +

C ′′
0 k

2(k2 − 1)

]
, (62)

[
x +

ip

k

]
eikT = C ′′

0 − ε

k

[
C ′′

0

4
e2iT − C ′′

0

4
e−2iT +

C ′
0

4(k − 1)
e2i(k−1)T

+
C ′

0

4(k + 1)
e2i(k+1)T − C ′

0k

2(k2 − 1)

]
, (63)

where C ′
0 = a − ib

k
, C ′′

0 = a + ib
k

.
More accurate results for the adiabatic invariants could be obtained if the calculation of

the function C ′
2 (25), i.e. C ′

2 and C ′′
2 , has been completed. So, integrating (25) with respect to

T for the known forms of C ′
0, C ′′

0 , C ′
1, C ′′

1 and using the condition (21), these functions could
be specified. As a consequence, the terms −ε2C ′

2 and −ε2C ′′
2 would, respectively, appear on

the left-hand sides of the expressions for the adiabatic invariants (27) and (28).

3.2. Numerical results

The expressions for the transition curves (34), (40), (49), (55) and (61) are in complete
agreement with the forms which can be found in the literature (for instance, in [10, 11]).
However, as far as the author is aware, the expressions for the adiabatic invariants which hold
along these curves have not been known previously. In order to confirm that they are indeed
adiabatic invariants, i.e. that they are conserved reasonably well in the asymptotic evolution,
some numerical simulations will be provided.

Using the analytical expressions for the transition curves (34), (40), (49), (55), the δε-
plane restricted to δ0 = 1 and δ0 = 4 is plotted in figure 1. Numerical simulations have been
carried out for four particular points A, B, C and D located on the transition curves and the
horizontal line ε = 0.1. (Note that the point C is on the left-hand side curve emanating from
δ0 = 4, while D lies on the right-hand side curve. The initial conditions are either a = 1, b =
0 (for points A and D) or a = 0, b = 1 (for points B and C).)
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Figure 1. Transition curves for the Mathieu equation in the δε-plane (shaded regions are the
regions of unstable motion).

(a) (d)

(b) (e)

(c) ( f )

Figure 2. Adiabatic invariants: (a) I11 for point A, (b) I12 for point A, (c) I13 for point A, (d) J11
for point B, (e) J12 for point B and (f) J13 for point B.

In figures 2(a)–(c), the adiabatic invariants I11(43), I12 (44) and I13 (45) corresponding to
point A are shown. Figures 2(d)–(f) illustrate the adiabatic invariants J11 (37), J12 (38) and
J13 (39) for the point B. It can be seen that all adiabatic invariants for these two points have a
tendency of small change over time.
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(a) (d)

(b) (e)

(c) ( f )

Figure 3. Adiabatic invariants: (a) I41 for point C, (b) I42 for point C, (c) I43 for point C, (d) J41
for point D, (e) J42 for point D and (f) J43 for point D.

The adiabatic invariants for the points C (52)–(54) and D (58)–(60) have the same property,
as it is, respectively, shown in figures 3(a)–(c) and(d)–(f).

4. Parametrically pumped system with a periodic driving force

The system described by the Hamiltonian

H = 1

2

p2

m(t)
+

1

2
m(t)ω2x2, (64)

with a pulsating mass

m(t) = m0 e2ε sin υt , ε � 1, (65)

where ω, m0 and υ are constants, is an example of a parametrically pumped oscillator. Such a
mass pumping function also describes, for instance, the problem in a quantum optics of a cavity
field pumped by an atomic reservoir or an electric circuit with weakly pumped capacitance
[12, 13]. An energy-like invariant for such systems is given in [14, 15]. In the succeeding
study, we will propose the procedure for deriving invariants of the driven pumped system
described by the Kanai–Caldirola Hamiltonian:

H = 1

2

p2

m(t)
+

1

2
m(t)ω2x2 − m(t)F (t)x, (66)

where F(t) = F0 sin �t is the periodic driving force.
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Passing to a new coordinate:

x = X e−ε sin υt , (67)

the corresponding equation of motion to first order in ε can be presented in the form

Ẋ = P,

Ṗ = −(ω2 + ευ2 sin υt)X + F0(1 + ε sin υt) sin �t.
(68)

Obviously, the coefficient next to the new coordinate X is now time dependent and the system
(68) represents the non-homogeneous equation of motion of time-dependent 1D harmonic
oscillator (1). Choosing the field X = U(t, P ), the basic field equation reads

∂U

∂t
+

∂U

∂P
[−(ω2 + ευ2 sin υt)U + F0(1 + ε sin υt) sin �t] − P = 0. (69)

Representing time t, the field U and the variable P analogously to the expansions (8)–(10),
one obtains
∂U0

∂T
− ∂U0

∂P0
[ω2U0 − F0 sin �T ] − P0 = 0, (70)

∂U1

∂T
− ∂U1

∂P1
ω2U1 − P1 = −∂U0

∂τ
+

∂U0

∂P0
υ2U ∗

0
eiυT − e−iυT

2i

+
∂U0

∂P0
F0

ei�T − e−i�T

2

eiυT − e−iυT

2
, (71)

∂U2

∂T
− ∂U2

∂P2
ω2U2 − P2 = −∂U1

∂τ
+

∂U1

∂P1
υ2U ∗

1
eiυT − e−iυT

2i
. (72)

Knowing that the parametric resonance υ = 2ω is illusory from a physical point of view [14],
this system will be studied from the standpoint of the influence of the driving force. Two cases
will be analysed separately: the non-resonant case and the case when the forced resonance
occurs.

4.1. Non-resonant force

The adiabatic invariants will be sought firstly for the case when � �= ω.
The partial differential equation for the first component U0 (70) is equivalent to the basic

field equation of the forced linear oscillator. Namely, if ε = 0, the system (68) models the
forced linear oscillator and the corresponding basic field equation (69) coincides with (70).

Taking the solution of (70) as

U0 = BP0 + f (T , τ ), (73)

where B is a constant and f (T , τ ) is an unknown time-depending function, substituting it into
(70), separating the terms containing P0 and the free terms with zero, one obtains that the
constant B can have two values:

B ′ = i

ω
, B ′′ = − i

ω
, (74)

while

f (T , τ ) = C0(τ ) eBω2T +
BF0

2

[
eBω�T

� − ω
+

e−Bω�T

� + ω

]
, (75)

where C0(τ ) is a function to be found.
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From (73)–(75), the solutions along trajectories U ∗
0 are derived:

U ∗
0 = C ′

0(τ ) eiωT + C ′′
0 (τ ) e−iωT

2
− F0

�2 − ω2

ei�T − e−i�T

2i
. (76)

Further, on the basis of the analogy between (14), (15) and (71)–(72), the forms of the
solutions for the second and third components of the field are assumed as

Uj = BPj + Cj(T , τ ) eBω2T , j = 1, 2, (77)

with Cj(T , τ ) being unknown, while the solutions along trajectory U ∗
j are equal to (23), for

ω2 ≡ δ0.
The elimination of the secular terms in equation (71) leads to the conclusion that C ′

0 and
C ′′

0 are constant. If the initial conditions are defined so that X(t = 0) = a and P(t = 0) = b,
the solution along trajectory (76) gives

C ′
0 = a +

b

ωi
+

F0�

ω(�2 − ω2)i
, (78)

C ′′
0 = a − b

ωi
− F0�

ω(�2 − ω2)i
. (79)

Solving (71), (72) one obtains

C ′
1 = D′

1 + S ′, C ′′
1 = D′′

1 + S ′′, (80)

where

D′
1 = υ2

4ωi

[
C ′

0

υ
eiυT +

C ′
0

υ
e−iυT +

C ′′
0

υ − 2ω
ei(υ−2ω)T +

C ′′
0

υ + 2ω
e−i(υ+2ω)T

]

+
F0(�

2 − ω2 + υ2)

4ω(�2 − ω2)

[
ei(�−ω+υ)T

� − ω + υ
− ei(�−ω−υ)T

� − ω − υ
+

e−i(�+ω−υ)T

� + ω − υ
− e−i(�+ω+υ)T

� + ω + υ

]
,

(81)

D′′
1 = − υ2

4ωi

[
C ′′

0

υ
eiυT +

C ′′
0

υ
e−iυT +

C ′
0

υ − 2ω
e−i(υ−2ω)T +

C ′
0

υ + 2ω
ei(υ+2ω)T

]

+
F0(�

2 − ω2 + υ2)

4ω(�2 − ω2)

[
e−i(�−ω+υ)T

� − ω + υ
− e−i(�−ω−υ)T

� − ω − υ
+

ei(�+ω−υ)T

� + ω − υ
− ei(�+ω+υ)T

� + ω + υ

]
, (82)

S ′ = − υ2

2ωi

[
C ′

0

υ
+

C ′′
0 υ

υ2 − 4ω2

]
+

F0υ

2ω

�2 − ω2 + υ2

�2 − ω2

[
1

(� − ω)2 − υ2
− 1

(� + ω)2 − υ2

]
,

(83)

S ′′ = υ2

2ωi

[
C ′′

0

υ
+

C ′
0υ

υ2 − 4ω2

]
+

F0υ

2ω

�2 − ω2 + υ2

�2 − ω2

[
1

(� − ω)2 − υ2
− 1

(� + ω)2 − υ2

]
.

(84)

The divisors in (81)–(84) indicate that in this system combination resonances can occur
if � ± υ = ω or υ − � = ω. So, the proposed solutions are valid out of these combination
resonances, when � ± υ �= ω and υ − � �= ω.

Analogously to the process of obtaining the adiabatic invariants for parametrically excited
systems (26)–(28), but for the incomplete solution of the first component (73)–(75), the
adiabatic invariants of the oscillator with combined parametric and forced excitation (68) are
derived: [

X − iP

ω

]
e−iωT − iF0

2ω

[
ei(�−ω)T

� − ω
+

e−i(�+ω)T

� + ω

]
− εD′

1 = C ′
0 + εS ′, (85)
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[
X +

iP

ω

]
eiωT +

iF0

2ω

[
e−i(�−ω)T

� − ω
+

ei(�+ω)T

� + ω

]
− εD′′

1 = C ′′
0 + εS ′′. (86)

The complete forms of these invariants are the result of substituting (78)–(84) into (85) and
(86). Since they are too cumbersome, they will not be shown here.

4.2. Resonant force

For the case when � = ω, the incomplete solution of (70) is given by (73), (74), but with

f (T , τ ) = C0(τ ) eBω2T +
BF0

4ω
e−Bω2T − F0

2ω
T eBω2T . (87)

The corresponding solution along trajectory is

U ∗
0 = C ′

0(τ ) eiωT + C ′′
0 (τ ) e−iωT

2
+

F0

4ω2

eiωT − e−iωT

2i
− F0

2ω
T

eiωT + e−iωT

2
. (88)

Using the assumed form for the second component of the field (77) and solving (71) we find
that C ′

0 and C ′′
0 are constant:

C ′
0 = a +

b

ωi
+

F0

4ωi
, (89)

C ′′
0 = a − b

ωi
− F0

4ωi
, (90)

whereas

C ′
1 = K ′

1 + Q′, C ′′
1 = K ′′

1 + Q′′, (91)

K ′
1 = υ2

4ωi

[
C ′

0

υ
eiυT +

C ′
0

υ
e−iυT +

C ′′
0

υ − 2ω
ei(υ−2ω)T +

C ′′
0

υ + 2ω
e−i(υ+2ω)T

]

− F0(υ
2 − 4ω2)

16ω3

[
eiυT

υ
+

e−iυT

υ
− ei(υ−2ω)T

υ − 2ω
− e−i(υ+2ω)T

υ + 2ω

]

− F0υ
2

8ω2

[
T

i

(
eiυT

υ
+

e−iυT

υ
+

ei(υ−2ω)T

υ − 2ω
+

e−i(υ+2ω)T

υ + 2ω

)
+

eiυT

υ2
− e−iυT

υ2

+
ei(υ−2ω)T

(υ − 2ω)2
− e−i(υ+2ω)T

(υ + 2ω)2

]
, (92)

K ′′
1 = − υ2

4ωi

[
C ′′

0

υ
eiυT +

C ′′

υ
e−iυT +

C ′
0

υ − 2ω
e−i(υ−2ω)T +

C ′
0

υ + 2ω
ei(υ+2ω)T

]

− F0(υ
2 − 4ω2)

16ω3

[
eiυT

υ
+

e−iυT

υ
− e−i(υ−2ω)T

υ − 2ω
− ei(υ+2ω)T

υ + 2ω

]

+
F0υ

2

8ω2

[
T

i

(
−eiυT

υ
− e−iυT

υ
+

e−i(υ−2ω)T

υ − 2ω
+

ei(υ+2ω)T

υ + 2ω

)
+

eiυT

υ2
− e−iυT

υ2

− e−i(υ−2ω)T

(υ − 2ω)2
+

ei(υ+2ω)T

(υ + 2ω)2

]
, (93)

Q′ = − υ2

2ωi

[
C ′

0

υ
+

C ′′
0 υ

υ2 − 4ω2

]
+

F0

2ωυ
+

F0υ
3

ω(υ − 2ω)2(υ + 2ω)2
, (94)

Q′′ = υ2

2ωi

[
C ′′

0

υ
+

C ′
0υ

υ2 − 4ω2

]
− F0

2ωυ
+

F0υ
3

ω(υ − 2ω)2(υ + 2ω)2
. (95)
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Finally, transforming the field X ≡ U = U0 + εU1 by using the incomplete solution for
the first component (73), (74), (87) and the incomplete solution for the second one (77), it
follows [

X − iP

ω

]
e−iωT − iF0

4ω2
e−2iωT +

F0

2ω
T − εK ′

1 = C ′
0 + εQ′, (96)

[
X +

iP

ω

]
eiωT +

iF0

4ω2
e2iωT − F0

2ω
T − εK ′′

1 = C ′′
0 + εQ′′. (97)

5. Conclusion

In this study, a novel approach to deriving the complete set of adiabatic invariants for some
time-dependent 1D oscillators is presented. It is based on the field method concept of deriving
an invariant from an incomplete solution of a partial differential equation. This concept is
adopted by combining it with the multiple variable expansion procedure. It has been shown
how the linear adiabatic invariants and the corresponding quadratic invariant can be derived
for the parametrically excited oscillator and the parametrically pumped oscillator excited with
a periodic driving force.

The procedure proposed for the parametrically excited oscillator whose motion is
described by the Mathieu equation enables obtaining the complete set of linear adiabatic
invariants and, consequently, the approximate solution for motion. Moreover, it gives the
expressions for the transition curves and makes it possible to carry out the stability analysis
(see the paragraph after equation (31)). All these benefits make the field method approach
more fruitful in comparison to the method of strained parameters and the method of multiple
scales. Namely, the method of strained parameters gives the expressions for the transition
curves and the approximate solution for motion, while the method of multiple scales enables
finding the transition curves, the approximate solution for motion and carrying out the stability
analysis.

The parametrically pumped oscillator described by the Kanai–Caldirola Hamiltonian is
treated with the aim of obtaining its adiabatic invariants in the case when the non-resonant
force acts as well as in the case when the forced resonance occurs. Besides, the possibilities
of combination resonance are detected and the combinations of the system parameters which
lead to this phenomenon are obtained.
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